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Abs trac t  

Two classes o f  electrovac solutions are obtained in oblate spheroidal coordinates,  which 
are the  electromagnetic analogs o f  Zipoy 's  monopole  and dipole solutions.  The asymp- 
totic behavior o f  the  solutions is s tudied to gain some  insight into the  nature  o f  the  
source o f  the  gravitational and electromagnetic  fields. A similar s ta t ionary solut ion o f  
the  pure gravitational field is found  to belong to Papapet rou 's  class. 

1. In troduct ion  

The equilibrium shape of a rotating star is an oblate spheroid. Hence 
axially symmetric solutions of Einstein's field equations are of interest in 
astrophysics. Misra (1960) used oblate spheroidal coordinates to obtain static 
solutions of sourceless Einstein's equations for the gravitational field. The 
starting point of his investigation was the familiar axially symmetric static 
line element in Weyl canonical form: 

ds 2 = - e 2 0 " - ~ ) ( d p 2  + dz z )  - pZe-Z~r d¢  2 + e 2a d t  2 (1.1) 

where 
~, = ~(p, z), o = o(p, z) 

Oblate spheroidal coordinates (u, 0) are then introduced with the help of the 
transformation 

p = a cosh u cos 0, z = a sinh u sin 0 (1.2) 

The metric (1.1) then reduces to the form 

ds 2 = - a 2 e 2 ( X - O ) ( s i n h 2  u + s in  2 0 ) ( d u  2 + dO 2) - a Z e  -2° c o s h  2 u c o s  2 0 d~b 2 

(1.3) 
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where 

0 ~ < u < %  - rr/2 ~< 0 ~< ~r/2, 0 ~<q5 ~< 2~, - o o < z  <oo  

Zipoy (1966) showed that solutions for "Newtonian potential" o can be 
written as a linear combination of  Legendre poynomials of  integral order L 
He discussed solutions corresponding to l = 0, l =1, and a combination l = 0, 1 
and endowed them with complicated topological properties. Bonnor and 
Sackfield (1968) showed that the solutions for l = 0, l = 1 can be interpreted 
as due to mass monopole and dupole, respectively, with Euclidean topology. 

The only astronomical objects discovered so far where general relativistic 
effects are not negligible are pulsars. They are rotating stars with a large mag- 
netic field. The angular velocities are small in relativistic units but the magnetic 
field is high. Hence axially symmetric solutions of  Einstein-Maxwell equations 
have attracted a lot of  attention. Misra (1962) found some electrovac solutions 
in oblate spheroidal coordinates. Bonnor (I 961) gave methods for generating 
axially symmetric electrovac solutions from the corresponding solutions of  
R ~  = 0. 

In sections 2 and 3 we discuss some static electrovac solutions in oblate 
spheroidal coordinates, which can be regarded as electromagnetic analogs 
of  Zipoy's solutions (1966). In section 4 we find a similar empty space 
stationary solution of  the gravitational field. 

2. A Class o f  Conformastat Solutions 

Let us take a special case of the metric (1.1) in the conformastat form: 

ds 2 = -a2e-2°[(s inhZ u + sin 20)(du 2 + dO 2) + cosh 2 u cos 2 0 dq52 ] + e 2a dt2 

(2.1) 

We can now write the Einstein-Maxwell equations for empty space in the form 

R ~  = - 8rrE~ (2.2) 

1~ ~vuva,  - FaUF~u (2.3) E~ c~=~u~ ~, *'~v 

F~e w + F ~ ; ~  + Fv~;t3 = 0 (2.4) 

F y  = o (2.s) 

We can find the following solutions analogous to those for pure gravitation 
field found by Zipoy (1966). 

Case {a) I = 0 - Monopote Solution 

e 2a = [1 + 8rr(A 2 +B2) l /Z~ tan- l (cosechu)]  -2, 

F41 = 2B~ sech u[1 + 8g(A 2 + B2)1/2/~ tan -1 (cosech u)] -2 

F2B = -Zcla~ cos 0 

0 ~< tan-  t (cosech u) <<, n/2 

(2.6) 

(2.v) 

(2.8) 
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where A, B, and ~ are constants. If  we put A = 0 this reduces to a pure electric 
field while if B = 0 it is a pure magnetic field. The constant of  integration in 
(2.6) is chosen in such a way that the metric reduces to the Euclidean form 
at spatial infinity. The above metric can also be deduced from Zipoy's solution 
(1966) corresponding to l = 0 by using Bonnor's theorem (1961). 

Spherical polar coordinates (r, O) are connected with the cylindrical coordi- 
nates (p, z) by means of  the relations: 

r = (p2 + z2)1/2 and 3- = sin -1 z /r  (2.9) 

Contrary to the usual convention g is here measured from the equator rather 
than the pole for comparison with oblate spheroidal coordinates. Using equation 
(I .2) we obtain 

r = a(sinh 2 u + cos 2 0) 1/2 ~ a sinh u (2.I0a) 

a sinh u sin 0 
g = sin -1 - -  , 0  (2.10b) 

r U---~ °° 

Hence at large distances we can write 

e 2~ = [1 + 8~(A 2 +B2)I/213 tan -1 (aft)] -2 (2.11) 

The metric (2.1) reduces at large distances to the isotropic form of  the Schwarzs. 
child solution in spherical polar coordinates with 

m = 87r(A 2 +B2)l/aj3a (2.12) 

l fwe  p u t A  = 0, B = 0, then m = 0. This may mean either of  two things: (i) The 
mass of  the source is related in such a way to the source of  electric and magnetic 
fields that the former vanishes with the vanishing of  the latter, or (ii) the source 
does not have a mass of  its own but only "electromagnetic mass," i.e., mass 
derived from the energy of  the electromagnetic field. We further notice that the 
space-time becomes flat with the vanishing of  the electromagnetic field (,4. = 
B= 0). 

We know that u = const, surfaces are oblate spheroids and the above 
solution depends on u alone. Hence this has spheroidal symmetry. It should 
be noted that 0 is discontinuous as 0 = const, lines cross u = 0. Therefore 
~glJv/3z is discontinuous over the disk z = 0, p ~< a. 

Bonnor and Sackfield (1968) discussed Zipoy's solutions (1966) for the 
pure gravitational field. They interpreted the discontinuity of  (Oo/3z) and u 
across the disk as the presence of  a monopole and a dipole layer, respectively. 
Using Newtonian potential theory they calculated the strength of  these 
monopole and dipole layers from the magnitudes of  the discontinuities. All 
this was possible because o satisfies Laplace's equation for the pure gravi- 
tational field. But if we use the same kind of  interpretation in our etectrovac 
solutions then we shall be led to contradictions because here u does not 
satisfy Laplace's equation, ttowever, for the conformastat metric e - °  always 
satisfies Laplace's equation in the electrovac case (Synge, 1960). 
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We now introduce electric and magnetic potentials X and 7; respectively 
according to the equations 

F4a = X;a, Fab = (--g)l /2 eabeT; ;e (2.13) 

where cab c is the Levi-Civita permutation symbol. 
From equations (2.7) and (2.8) we obtain 

X = (4fr)-l(  A2 + B Z ) - l / 2 B { [  1 + 8rr( A2 + B2)l/2fl  tan-1 (cosech u)] -1 _ 1) 

(2.14) 

7; = - 2A¢J tan-  1 (cosech u) (2.15) 

It should be noted that A is present in the expression for X, i.e., the presence 
of  the magnetic field affects the electric potential but not vice verse. The 
constants of  integration have been chosen such that at r --* oo, X -+ 0, and 
7; -+ O. 3X/3Z and 37;/3z are discontinuous over the disc z = 0, p <~ a. Taking 
the asymptotic expansion of  X for large values o f r  we have 

X = -2Bf la / r  + O(r -2) (2.16) 

We know that inside matter Maxwell's equation is 

F;Vvv = j u  (2.17) 

For 

# = 4, (F4Vx/~) ,  v =/4x/Z-g (2.17a) 

Using Gauss's theorem and integrating both sides over the volume of  an 
infinite sphere we obtain the total charge of  the source: 

e = - 8rrBN (2.18) 

In the absence of  the magnetic field, A = 0, (2.12) reduces to 

m = +-82rBfia (2. t 2a) 

Hence in such a case 

e = +-m (2.19) 

Bonnor and Wickramasuriya (1972) used this solution and matched it with the 
solution inside an oblate spheroid containing charged dust with charge density 
equal to the matter density. 

Taking the asymptotic expansion of  the magnetic potential at r -+ oo we find 
that the monopole term O(r -~)  is present. 

Case (b) l = 1 - Dipole Solution 

e 2or = { 1 - 87r(A 2 + B 2 ) 1 / 2 " ) ' [ 1  - sinh u tan -1 (cosech u)] s in  0}  - 2  

(2.20) 

F41 = 2Be2~7 sin 0 [tanh u - cosh u tan -1 (cosech u)] (2.21) 
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F42 = 2BeZe3` cos 0 [1 - sinh u tan -1 (cosech u)] (2.22) 

F23 = -Aa3` sin 20 [sinh u - cosh 2 u tan -1 (cosech u)] (2.23) 

F31 = -2Aa3" cosh u cos 2 0 [1 - sinh u tan -1 (cosech u)] (2.24) 

X = -- ( 4 r r ) -  1 (A 2 + B2) -1/2B 

x ({1 - 8rr(A 2 + B 2 ) l / 2 T [ t  - sinh u tan -1 (cosech u)] sin 0} -1 - 1) 

= 2A3' sin 0 [1 - sinh u tan -1 (cosech u)] 

At large distances e 2~' reduces to the form 

(2.25) 

(2.26) 

(2.27) 

Expanding this expression in powers of  1/r we find that the term in 1/r is abser 
while the coefficient of  the term in 1/r 2 is (8rra2/3)(A 2 + B 2)1/23, sin 0 .  This 
shows that  the mass of  the source is zero while it  has dipole moment .  Since 
a dipole contains equal quantities of  positive and negative mass, the total  mass 
vanishes. Here guy is discontinous across the disk z = 0, 0 ~< q and so also is 
8guy~Oz. As in the case of  total  mass in case (a), the dipole moment  in this 
case vanishes when A = B = 0 and the line element assumes the Minkowskian 
form. 

Similarly the asymptotic expansion of  X and ~ reveal the existence of  elec- 
tric and magnetic dipole moments  of  the source but  no monopoles.  Not only 
are X and ~b themselves discontinuous across the disk but  so also is 8X/Sz. 

Case (c) l = 0 and 1 Combined 

e 2~ = (1 + 8rr(A 2 +B2)  1/2 03 tan -1 (cosech u) 

- 3'[1 - sinh u tan -1 (cosech u)] sin 0}) -2 (2.28) 

F41 = 2Be 2~ {/3 sech u + 3' sin 0 [tanh u - cosh u tan -1 (cosech u)] } 

(2.29) 

Similarly the other components  of  Fuu can be written. The electric and 
magnetic potentials will evidently be suitable combinations of  the values in 
eases (a) and (b). Hence the monopole  and dipole moments  will also be combi- 
nations of  these quantities in the two cases. 

3. Another Class o f  Solutions 

We took above only the special case of the metric (1.3) when Z, = O. 
Bonnor (1961) gave us a theorem for generating electrovac solutions from 
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empty space solutions of  the pure gravitational field even when X 4 = 0. We can 
therefore generate a more general class of  solutions from those of  Zipoy (1966) 

Case (a) I = 0 - Monopo le  Solut ion 

e2(r = [167r(A 2 +B2)] -1 cosech 2 [-13 tan -1 (cosech u) + C] (3.1) 

where 

C=  sinh-1 [16rr(A 2 +/;,2)] -1/2 (3.2) 

= (sinh 2 u + sin 2 0) ~ 
e2X ~ c~sh ~ u (3.3) 

f41  = [87r(A 2 +B2) ]  -1B/3 sech u cosech 2 [-/3 tan -1 (cosech u) + C] 

(3.4) 

F23  = -2Aa/3  cos 0 (3.5) 

X = [87r(A 2 +B2)]  -a {coth C - coth [-t3 tan -1 (cosech u) + C] } (3.6) 

= -2A/3 tan -1 (cosech u) (3.7) 

It can be shown, as in the corresponding case in the previous section, that 
the metric reduces at large distances to that of  Schwarzschild with 

m = -a/3 coth C (3.8) 

coth C can be evaluated from equation (3.2)./3 and C must be given opposite 
signs to make m positive. 

The above metric has spheroidal symmetry similar to that given by equation 
(2.6). Further, Og,~v/Sz, 8X/Oz, and O~/3z  are all discontinuous across the disk. 
The asymptotic expansions of  both X and ff show the existence of  monopoles. 
As in case (a) of  the last section the total electric charge of  the source is 
given by 

e = - [2(A 2 +B2)] -la/3 cosech 2 C= -87ra/3 (3.9) 

i.e., 

e /m = 87r tanh C (3.10) 

If we put A = 0, B = 0, then the solution does not exist, unlike in case (a) 
of  the last section. At u = 0, 0 = 0, i.e., O = a, z = 0 (the rim of  the disk referred 
to above), e 2x = 0. This is an essential singularity of  the metric. The nature of  
the singularity has been discussed in detail by Zipoy (1966). 

Case (b)  l = 1 - Dipole  Solu t ion  

e 20 = [167r(A 2 +B2)] -~ cosech 2 ('},[1 - sinh u tan -1 (cosech u)] sin 0 + C} 

(3.11) 
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where C is given by equation (3.2). 

eZ x = [sinh 2 u + sin 2 0)  -~'2 
\- cosh -2 u exp(-72  c°s2 0 {{tan -1 (cosech u)l 2 

+ [1 - sinh u tan -1 (cosech u)] 2}) (3.12) 

F41, F42, F23, and F31 are given by equations (2.21)-(2.24) with e a° given 
by (3.11). Further 

X = [81r(A 2 + B2)] -1B(coth C -  coth {7[ 1 - sinh u tan -1 (cosech u)] sin 0 + C}) 

(3.13) 
g? is given by equation (2.26). 

Taking the asymptotic expansion of (3.1 I) we find that the total mass of  
the source is zero and the coefficient of  1/r 2 is ~Ta 2 coth C sin 0, indicating 
the presence of dipole moment. The asymptotic expansions of X and ~ show 
the existence of  the electric and magnetic dipole moments, but there are no 
monopoles. X, OX/Oz, and ~ are discontinuous across the disk. 

Case (c} l = 0 and t {Combined) 

e2~ = [16rr(A 2 +B2)] -1 cosech 2 (_/~ tan-1 (cosech u) 

+ 3'[1 - sinh u tan -1 (cosech u)] sin 0 + C} (3.14) 

e2 x = (sinh 2 u + sin 2 0)  ~2 ~/2 
\ cosh -2- u , exp ( -  4~7 [sin 0 tan-1 (cosech u) 

- tan -1 (cosech u sin 0)] - 3 '2 cos 2 0 {[tan -I  (cosech u)] 2 

+ [1 - sinh u tan -1 (cosech u)] 2}) (3.15) 

F4~ is given by equation (2.29) with e 2° substituted from (3.14). The other 
components o f  Fur,  X, and ~ can be similarly written. On account of the non- 
linearity of  the field equations the expression for e 2x in (3.15) is not just the 
sum of  (3.3) and (3.12) but an additional "interference term" occurs. This 
gives rise to additional singularities discussed in detail by Zipoy (1966). 

4. Stationary Solutions o f  Gravitational bTeld 

Ehlers (1959, 1962) and later Misra and Pandey (1971) gave methods 
for generating a stationary solution of a source-free gravitational field from a 
static solution. Bonnor (1961) pointed out the formal similarity between 
these methods and the purely magnetic field solutions found in cases (a) and 
(b) of  the last section with B = 0. By these methods we obtain a metric of  
the form 

ds 2 = -a2eZ(X-~)(sinh2 u + sin 20)(du z + dO 2) - a Z e  -2° cosh 2 u cos 2 0 d~b 2 

+ e2°(dt - HdO) 2 (4.1) 
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We generate from Zipoy's solutions the following: 

Case (a) 1 = 0 

e ze = A  -1 sech[-2/3 tan -1 (cosech u) + k l ]  (4.2) 

e2 x (sinh e u + sin e 0)~2 
= \ cosh -e u (4.3) 

H = 2Aa~ sin 0 + C 1 (4.4) 

Case [b) l = 1 

e zo = A-1 sech {27[1 - sinh u tan -1 (cosech u)] sin 0 + kz} (4.5) 

e2 x = (sinh 2 u + sin e 0) -q'a 
\ c ~ t ~  u e x p ( -  72 c°se 0 {[tan-1 (c°sech u)] e 

+ [1 - sinh u tan -1 (cosech u)] e}) (4.6) 

H = A a 7  cos 2 0 [cosh 2 u tan-1 (cosech u) - sinh u] + C 2 (4.7) 

K1, Ke, Ct ,  and C 2 are constants of  integration. Similarly the metric for the 
combined case l = 0, 1 can be written. All of  them have a singularity at u = 0, 
0 = 0. None of  them go over to the Euclidean form at spatial infinity. 

It is relevant to mention here that all the stationary solutions generated by 
the method of  Misra and Pandey (1971) are members of  the class first dis- 
covered by Papapetrou (1953) [Levy (1972)].  Papapetrou (1953) has shown 
that for this class the term of  order ( l / r )  in the asymptotic expansion of  g44 
is absent if we impose the condition of  asymptotic flatness. This means that 
the source has angular momentum but no mass. If, however, the condition o f  
asymptotic flatness is relaxed we can retain the term of  order ( l / r )  as in the 
above cases. 
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